PAC 3. Transformacións geomètriques i Geometria fractal.

En aquesta PAC es tracten els dos temes que figuren al títol. És la més difícil i la que requereix un major nivell de “formalitat” i abstracció. Per la meva part, mai havia fet servir el signe de “sumatori” ni editors d’equacions. Per cert, un consell, no feu servir l’editor d’equacions del Open Office si teniu oportunitat de fer servir el del Word. No hi ha color…

Producte vectorial, producte escalar, transformacions geomètriques (simetria, traslacions, etc…) i la part més difícil i entretetinguda de tot el curs: els fractals. Per que us pogueu fer una idea del nivell de dificultat del que es demana, a l’examen es presenta una imatge fractal de dues dimensions en la seva segona o tercera iteració i no només s’ha d’entendre com es crea el fractal (formalitzar-ho no és necessari, però sí imprescindible per respondre el que es demana) sino que també s’ha de dir quina és la seva longitud a la iteració d’ordre infinit i calcular la seva dimensió fractal… fiuuuu… 🙂

Aquesta imatge es correspon amb un fractal tridimensional que es coneix amb el nom de esponja de Menger.

Captura de pantalla 2014-02-28 a les 17.23.33

Aquí teniu el resultat de la meva PAC:

http://graumultimedia.com/wp-content/uploads/PAC3-Pere-Amengual.pdf


 

Leave a Reply